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The present paper deals with the synthesis and swelling behavior of the semi- and interpenetrated multi-component networks based
on polyacrylamide. The networks were prepared by a “single step” process of polymerization/crosslinking and are constituted by
a polyacrylamide matrix and a biodegradable interpenetrated polymer. The synthesis was carried out in aqueous medium, for pre-
established conditions of temperature, duration and concentrations of the polymerization system components (monomer, initiator,
crosslinking agent, inclusion polymer). The yield in crosslinked polymer, the swelling degree and the swelling rate constant were the
parameters of interest in this experimental study.

In order to evaluate the quantitative influence of the reaction conditions upon yield and swelling degree, different classes of neural
networks are tested. Due to their performance, Jordan Elman networks – a special type of networks – were chosen.

A trial and error method leads to a neural network topology with two hidden layers and different activation functions in context,
intermediate and output layers. The predictions provided by this model are in good agreement with the experimental data. A general
modeling strategy, useful for different polymerization processes, is also developed.

Keywords: Crosslinked polymer, swelling degree, multi-component hydrogels, Jordan Elman neural networks, modeling strategy

1 Introduction

Semi- or interpenetrating multi-component network-type
hydrogels are materials with three-dimensional structure,
characterized by a high swelling capacity.

Due to the high water retention ability (more than 90%),
such networks possess a flexibility similar to that of the nat-
ural tissue. Special properties (mechanical, diffusion and
absorption) of the three-dimensional network-type hydro-
gels make possible their use in various domains – food,
cosmetics, pharmaceutical industry, medicine, tissue en-
gineering, agriculture, electrotechnics and electronics etc.
(1–6).

For many applications, e.g. controlled-release systems,
agrochemical products, these materials are required to
present a high capacity of biodegradation under the ac-
tion of the biologic fluids or of the microorganisms present
in the soil.

Address correspondence to: Silvia Curteanu, “Gh. Asachi”
Technical University, Faculty of Chemical Engineering, B-
dul D. Mangeron, No. 71A, 700050, Iasi, Romania. E-mail:
silvia curteanu@yahoo.com

To achieve this goal, different preparation strategies were
considered (7):

(a) The use of biodegradable natural or synthetic poly-
mers;

(b) The chemical or biological modification of natural
polymers;

(b) The association of non-biodegradable polymers with
polymeric materials with pronounced biodegradability.

The multi-component networks based on polyacry-
lamide (PAAm) are particularly appropriate for biomed-
ical, pharmaceutic or agricultural applications. Thus, due
to the analgesic effects and to their ability to speed up the
healing process, polyacrylamide hydrogels (PAAm – 5%
and oxygenated water – 95%) are used in aesthetic surgery
(5, 8).

Polyacrylamide hydrogels present selective biodegrad-
ability under the action of the gastro-intestinal juices, so
that they can be used as covering agent for tablets to pro-
tect the active principle, to conceal the non-agreeable taste
and smell, as well as to control the release of the active
principle. Three-dimensional networks based on polyacry-
lamide are used in ophthalmology as mechanical protectors
for iris, retina and corneal endothelia (5).
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Polyacrylamide gels are very useful for soil improvement,
i.e. for the stabilization of sandy soils, in promoting the
selective sorption of nutrients by plants, in increasing the
permeability and agricultural efficiency of non-structured
soils or stopping of erosion (6, 9, 10). Multi-component
networks based on polyacrylamide are used as controlled
release systems for fertilizers and present a high efficiency
in the cultivation of saplings and plants on reduced surfaces
(green houses, gardens).

The present paper deals with the synthesis and swelling
behavior of semi- and interpenetrated multi-component
networks based on polyacrylamide. The networks were
prepared by a “single step” process of polymeriza-
tion/crosslinking and consist of a polyacrylamide matrix
and a biodegradable interpenetrated polymer (11, 12).

Artificial neural networks (ANN) became alternative
models to traditional explicit constitutive ones, especially
for complex and non-linear processes. Their critical advan-
tage is the flexibility of the model that can adapt to complex
interrelations and is capable to detect even small signals at a
large noise level. Hence, ANN are applied where no simple
mathematical model can be assumed, many potential pa-
rameters interact and the experimental errors are high (13).

Prediction and optimization of polymer properties (es-
pecially in the case of high molecular weight polymers),
is a complex and highly non-linear problem, with no easy
method to solve directly and accurately. The effects of mod-
ifying the reaction conditions upon the polymerization and
the properties of the resulting polymer are not easy to in-
vestigate experimentally, given the large number of possible
changes. This severely curtails the design of new polymers
with specific end-use properties (14).

Neural networks are frequently used in polymer reaction
engineering in different types of applications. The open lit-
erature presents many attempts concerning neural network
applications for polymerization processes: direct modeling
with different types of neural networks (15, 16), neural
networks based soft sensors (17), inferential modeling (18,
19), inverse neural network modeling (20–22), optimization
(23–26), process control (27–29). These types of applica-
tions were reviewed in our precedent work (30).

Fernandes and Lona provide a brief tutorial on sim-
ple and practical procedures that can help in selecting and
training neural networks and address complex cases where
the application of neural networks have been successful
in the field of polymerization (31). A significant paper for
polymer reaction engineering was published by Roy et al.
and concerns polymer property prediction and optimiza-
tion using neural networks (14).

The “single step” preparation process of multi-
component hydrogels based on polyacrylamide is a very
complex one, so that the neural network modeling was ap-
plied to control the synthesis. Different classes of neural
networks are tested and, as function of their performance,
a special type of networks was chosen – Jordan Elman net-
works. A trial and error method leads to a neural network

topology with two hidden layers and different activation
functions in context, intermediate and output layers. The
predictions provided by this model are in good agreement
with the experimental data.

The paper develops a general methodology for neural
network modeling with high chances to be applied success-
fully to other complex polymerization processes.

2 Experimental

Mono- and multi-component networks based on polyacry-
lamide were synthesized by a “single step” procedure (si-
multaneous polymerization/crosslinking reactions).

Acrylamide (Am) (Merck), formaldehyde (FA), 37% so-
lution (S.C. Chemical Company), potassium persulfate
were used as received. The inclusion polymers, i.e., starch
(Merck), poly(vinyl alcohol) (Merck) and gelatin (Merck)
were commercial products. These polymers were intro-
duced to increase the biodegradation capacity of the poly-
acrylamidic networks.

The synthesis was carried out in aqueous medium, for
pre-established conditions of temperature, duration and
concentrations of the polymerization system components
(monomer, initiator, crosslinking agent, inclusion poly-
mer). The obtained hydrogels were repeatedly washed to
remove the unreacted monomer and crosslinking agent as
well as the macromolecular compounds (linear polyacry-
lamide, inclusion polymer) not immobilized within the net-
work. The reaction products were dried at 40◦C up to con-
stant weight.

The yield in crosslinked polymer was determined gravi-
metrically. The swelling behavior was studied using a
homemade device, functioning on the principle of Dogatkin
instrument. The measurements were carried out at ambi-
ent temperature. The maximum swelling degree was deter-
mined using the relation (1):

α = WwWw/Wp × 100 (1)

where Ww is the mass of absorbed water and Wp the mass
of dried polymer.

The swelling rate constant was determined using the
Equation 2:

ln
αmax − αt

αmax
= k · t (2)

where αmax and αt are the maximum swelling degree and
the swelling degree at time t, respectively, and t is process
duration.

The experimental results are presented in Tables 1–4,
where CM represents the monomer (acrylamide) concentra-
tion, CI is initiator (K2S2O8)concentration, CA is crosslink-
ing agent (formaldehyde) concentration, PI represents the
amount of inclusion polymer (starch, poly(vinyl alcohol)
(PVA), gelatin), T is the temperature, t is the reaction time,
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Table 1. Experimental data for monocomponent networks of hydrogels based on PAAm

No. crt. CM [mol/l] CI [% weight] CA [mol/l] T [◦C] t [h] η [%] α [%] k [min−1]

1 0.28 0.5 12.33 50 5 4.71 2 642 9.18 10−5

2 0.56 9.40 3 876 8.29 10−5

3 0.84 16.04 4 443 7.25 10−5

4 1.12 17.61 4 673 7.58 10−5

5 1.40 21.63 4 870 7.18 10−5

6 1.68 23.50 6 950 5.85 10−5

7 1.96 28.59 9 014 4.92 10−5

8 2.24 38.70 9 035 5.57 10−5

9 3 0.094 12.33 50 5 38.95 1 020 1.20 10−4

10 0.18 40.11 1 100 1.20 10−4

11 0.28 40.17 1 134 0.98 10−4

12 0.37 40.51 1 177 0.97 10−4

13 0.47 41.08 1 211 0.97 10−4

14 0.56 41.59 1 215 0.94 10−4

15 0.66 43.94 1 281 0.93 10−4

16 0.75 44.85 1 486 0.89 10−4

17 0.85 44.85 1 540 0.84 10−4

18 0.94 45.19 1 027 1.10 10−4

19 3 0.5 0.5 50 5 98.15 1 215 9.11 10−5

20 1 92.55 1 250 9.04 10−5

21 1.5 87.43 1 300 8.98 10−5

22 2 86.28 3 262 8.88 10−5

23 4 69.88 4 256 6.23 10−5

24 6 59.74 6 478 5.91 10−5

25 8 51.06 6 811 5.88 10−5

26 10 43.88 7 040 5.82 10−5

27 12 38.92 7 476 5.52 10−5

28 12.33 38.00 7 588 5.46 10−5

29 3 0.5 12.33 30 5 5.92 2 175 8.81 10−5

30 33 19.12 2 686 7.03 10−5

31 35 31.81 5 102 6.14 10−5

32 40 34.26 8 225 5.61 10−5

33 45 35.59 8 377 5.59 10−5

34 47 38.15 8 432 5.59 10−5

35 50 38.70 9 035 5.57 10−5

36 54 42.02 9 986 5.49 10−5

37 57 43.79 10 998 5.44 10−5

38 61 47.39 12 434 4.71 10−5

39 3 0.5 12.33 50 1 29.27 4 663 9.02 10−5

40 2 36.45 4 745 5.20 10−5

41 3 39.26 5 238 5.09 10−5

42 4 40.11 5 575 5.05 10−5

43 5 43.55 5 750 4.72 10−5

44 6 44.21 6 263 4.69 10−5

45 7 46.31 7 444 4.68 10−5

η is the yield in crosslinked polymer, α is the swelling degree
and k is the swelling rate constant.

2.1 Neural Network Modeling

High molecular weight polymer system represents complex
classes of materials and is very difficult to model. Besides
being highly non-linear, there are a large number of pa-

rameters that need to be accurately defined if such systems
are to be properly characterized (14). The relationships
between the parameters being modeled and the actual be-
havior of these variables in the real world must be corre-
lated as precisely as possible. However, in most cases, this is
not possible and several approximations and simplifications
are often made at various stages. When dealing with sparse,
noisy or incomplete data, conventional methods frequently
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Table 2. Experimental data of bicomponent hydrogels based on PAAm and starch

No. crt. CM [mol/l] CI [% weight] CA [mol/l] T [◦C] t [h] PI [g] η [%] α [%] k [min −1]

1 0.35 0.5 12.33 50 5 1 13.73 6 194 5.16 10−5

2 0.70 15.24 4 504 6.05 10−5

3 1.05 17.00 2 750 7.75 10−5

4 1.40 19.32 2 575 7.81 10−5

5 1.75 20.30 2 477 7.93 10−5

6 2.10 25.70 2 055 8.06 10−5

7 2.45 30.26 2 023 8.14 10−5

8 3 0.07 12.33 50 5 1 27.13 1 592 9.00 10−5

9 0.14 27.96 1 727 8.76 10−5

10 0.21 29.01 1 791 8.76 10−5

11 0.28 29.12 1 873 8.57 10−5

12 0.36 30.23 1 885 8.41 10−5

13 0.43 32.42 1 887 8.35 10−5

14 0.5 30.26 2 023 8.14 10−5

15 3 0.5 0.5 50 5 1 9.98 1 750 8.56 10−5

16 1 13.22 1 859 8.37 10−5

17 1.5 16.70 2 679 8.26 10−5

18 2 23.61 3 838 8.08 10−5

19 4 24.08 3 882 8.06 10−5

20 6 28.17 4 144 7.89 10−5

21 8 39.16 4 149 7.80 10−5

22 10 42.66 4 217 7.77 10−5

23 12 48.48 5 759 7.75 10−5

24 12.33 30.26 2 023 8.14 10−5

25 3 0.5 12.33 29 5 1 25.62 3 558 6.76 10−5

26 36 26.47 3 051 6.79 10−5

27 43 27.56 2 119 7.59 10−5

28 50 30.26 2 023 8.14 10−5

29 57 34.02 1 565 8.22 10−5

30 64 37.77 1 560 8.49 10−5

31 3 0.5 12.33 50 1 1 27.05 1 536 8.84 10−5

32 2 29.25 1 969 8.71 10−5

33 3 30.06 1 982 8.55 10−5

34 4 30.07 2 002 8.38 10−5

35 5 30.26 2 023 8.14 10−5

36 6 29.06 2 167 7.67 10−5

37 3 0.5 12.33 50 5 0.25 33.97 4 802 6.91 10−5

38 0.50 32.50 3 292 7.47 10−5

39 0.75 32.25 2 112 8.05 10−5

40 1.00 30.26 2 023 8.14 10−5

41 1.25 30.76 1 582 8.57 10−5

42 1.50 30.06 1 548 8.96 10−5

fail. In addition, conventional methods lack generalization,
fail to incorporate statistical and systematic fluctuations,
and in most cases are limited to finite state spaces. Thus,
the important correlations between model developed and
the real properties may be lost or not captured correctly
(14). Consequently, the modeling with neural networks can
overcome these difficulties due to a series of advantages:
the possibility to apply this method to complex non-linear
processes, the ease in obtaining and using neural models,
the possibility to substitute experiments with predictions.
Neural models need only input-output data (experimental

or simulation data) and thus their advantages are evident
against the complexity of the computation.

The neural network modeling implies the following
stages: collecting the training data by experiments, mak-
ing up the training and testing data sets, developing the
neural network topology, training and, finally, establish-
ing the performance of the neural network model by
comparing the network prediction to unseen (validation)
data.

The available set of data is presented in Tables 1–4 and
they are divided into training (a number of 157 data) and
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372 Curteanu et al.

Table 3. Experimental data of bicomponent hydrogels based on PAAm and gelatin

No. crt. CM [mol/l] CI [% weight] A [mol/l] T [◦C] t [h] PI [g] η [%] α [%] k [min −1]

1 0.35 0.5 12.33 50 5 1 2.47 1 312 8.15 10−5

2 0.70 3.69 3 132 6.93 10−5

3 1.05 12.86 3 245 6.77 10−5

4 1.40 21.43 3 451 6.55 10−5

5 1.75 24.53 5 214 6.47 10−5

6 2.10 26.28 6 175 6.11 10−5

7 2.45 29.19 6 658 5.73 10−5

8 2.80 34.45 6 796 5.08 10−5

9 3.15 36.91 7 323 4.87 10−5

10 3 0.06 12.33 50 5 1 10.70 6 128 6.30 10−5

11 0.12 28.03 6 183 6.25 10−5

12 0.18 28.59 6 203 6.14 10−5

13 0.25 28.91 6 240 5.90 10−5

14 0.31 29.08 6 343 5.87 10−5

15 0.37 29.26 6 440 5.79 10−5

16 0.5 29.19 6 658 5.73 10−5

17 3 0.5 0.5 50 5 1 18.00 0 0
18 1 18.58 0 0
19 1.5 18.85 0 0
20 2 49.93 1 475 8.48 10−5

21 4 43.00 1 767 8.03 10−5

22 6 34.17 2 682 7.77 10−5

23 8 26.25 3 400 6.76 10−5

24 10 23.16 3 944 6.49 10−5

25 12 20.10 5 053 6.22 10−5

26 12.33 29,19 6 658 5.73 10−5

27 3 0.5 12.33 29 5 1 0 0 0
28 36 10.66 8 520 4.75 10−5

29 43 26.02 6 820 5.17 10−5

30 50 29.19 6 658 5.73 10−5

31 57 30.70 5 155 6.19 10−5

32 64 31.15 3 491 7.39 10−5

33 3 0.5 12.33 50 1 1 12.24 7 520 4.32 10−5

34 2 16.71 7 217 4.45 10−5

35 3 19.10 6 888 4.86 10−5

36 4 20.70 6 710 5.04 10−5

37 5 29.19 6 658 5.73 10−5

38 6 25.83 5 271 6.80 10−5

39 3 0.5 12.33 50 5 0.25 23.79 7 300 4.48 10−5

40 0.5 27.13 6 820 4.72 10−5

41 0.75 28.03 6 728 5.18 10−5

42 1 29.19 6 658 5.73 10−5

43 1.25 30.85 5 622 6.10 10−5

44 1.5 32.22 4 051 6.45 10−5

validation (20 data, approximately 10%) data sets. Seven
input variables were considered: CM (monomer concentra-
tion), CI (initiator concentration), CA (crosslinking agent
concentration), PI (amount of inclusion polymer), T (tem-
perature), t (reaction time) and type of included polymer
codified as 1 – no polymer added, 2 – starch, 3 – PVA
and 4 – gelatin. The outputs of the neural model are η

(yield in crosslinked polymer) and α (swelling degree). Thus,
the neural network modeling established the influence

of reaction conditions on reaction yield and swelling
degree.

The next task in the modeling technique is to develop
the neural network topology. To determine the optimum
network configuration, different elements were tested: neu-
ral network types, number of hidden layers and neurons,
learning rules and activation functions.

In the present paper, four types of neural networks that
have as common characteristic the supervised learning

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
3
3
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



Neural Network Modeling of a Hydrogels Synthesis 373

Table 4. Experimental data of bicomponent hydrogels based on PAAm and PVA

No. crt. CM [mol/l] CI [% weight] CA [mol/l] T [◦C] t [h] PI [g] η [%] α [%] k [min −1]

1 0.23 0.5 12.33 50 5 1 6.53 750 9.92 10−5

2 0.46 10.27 1 410 9.83 10−5

3 0.69 12.24 1 980 6.63 10−5

4 0.92 12.84 2 030 5.61 10−5

5 1.15 15.63 2 232 5.59 10−5

6 1.38 15.75 2 273 5.54 10−5

7 1.61 16.78 2 276 5.51 10−5

8 1.84 19.34 2 275 5.48 10−5

9 3 0.06 12.33 50 5 1 18.51 7 309 5.08 10−5

10 0.12 18.54 7 504 5.02 10−5

11 0.18 18.61 7 578 5.01 10−5

12 0.25 18.76 7 610 4.94 10−5

13 0.31 19.24 7 640 4.93 10−5

14 0.37 19.96 7 670 4.89 10−5

15 0.44 21.06 7 817 4.80 10−5

16 0.5 19.34 2 275 5.48 10−5

17 3 0.5 0.5 50 5 1 46.00 3.832 4.58 10−5

18 1 43.10 3 800 4.60 10−5

19 1.5 42.23 3 766 4.63 10−5

20 2 38.77 3 700 4.63 10−5

21 4 27.61 3 541 4.82 10−5

22 6 21.90 3 195 5.00 10−5

23 8 15.85 3 027 5.19 10−5

24 10 13.26 2 800 5.26 10−5

25 12 10.42 2 318 5.48 10−5

26 12.33 19.34 2 275 5.48 10−5

27 3 0.5 12.33 29 5 1 2.83 4 410 4.99 10−5

28 36 11.57 4 235 5.07 10−5

29 43 15.57 3 700 5.19 10−5

30 50 19.34 2 275 5.48 10−5

31 57 18.81 2 096 5.95 10−5

32 64 18.15 1 896 6.43 10−5

33 3 0.5 12.33 50 1 1 16.36 1 996 7.63 10−5

34 2 16.56 2 015 7.07 10−5

35 3 18.29 2 120 6.85 10−5

36 4 18.53 2 200 6.25 10−5

37 5 19.34 2 275 5.48 10−5

38 6 18.70 2 330 5.29 10−5

39 3 0.5 12.33 50 5 0.25 22.45 5 280 5.23 10−5

40 0.50 22.32 4 314 5.32 10−5

41 0.75 21.02 3 380 5.36 10−5

42 1.00 19.34 2 275 5.48 10−5

43 1.25 19.17 2 116 5.98 10−5

44 1.50 18.50 1 792 6.99 10−5

control (Multi-layer Perceptrons (MLP), Generalized
Feed-forward Networks (GFN), Modular Neural Net-
works (MNN) and Jordan Elman Networks (JEN)) have
been tested.

Multi-layer perceptron can approximate any in-
put/output map, but it trains slowly and requires lots
of training data. Generalized feed-forward networks are
a generalization of MLP, the difference being into the con-
nections that can jump over one or more layers. In practice,

generalized feed-forward networks often solve the prob-
lem much more efficiently. Modular feed-forward networks
are a special class of MLP, using several parallel MLPs,
and then recombining the results. This capability tends
to create some structure within topology, which will fos-
ter specialization of function in each sub-module. Jordan
and Elman networks supply the multi-layer perceptron with
context units, which are processing elements that remem-
ber past activity. Context units provide the neural network
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with the ability to extract temporal information from the
data (32).

The determination of neural network topology includes
the number of hidden layers, the number of neurons in
each layer and the connections between them. The num-
ber of neurons in the input and output layers is given by
the dimensionality of the problem. In our case, there are
seven input quantities and two outputs, corresponding to
the chosen input and output variables. Regarding the num-
ber of hidden layers, it has been proved that a neural net-
work requires at most two hidden layers to approximate
any function to an arbitrary order of accuracy (33).

The procedure for determination of neural network ar-
chitecture applied in this work is the trial and error method
and the number of hidden layers and units was established
by training a different range of networks and selecting the
one that best balanced generalization performance against
network size.

The objective of the training procedure is to find a set of
possible weights that will enable the network to produce a
prediction (bi ) as similar as possible to the known output
(oi ). This is achieved by minimizing the cost function, E,
which is the mean square error (33).

E = 1
2q

q∑
1

(oi − bi )2 (3)

where q is the number of the training patterns (q = 157 for
this case study).

When the error becomes too large, the weights have to
be adjusted and the process repeats to evaluate the output
of the neural network. This cycle is repeated till the error
becomes low or the stop criterion is satisfied (34).

The best results were obtained with MLP and JEN mod-
els (Figures 1 and 2).

For JEN networks there are four basic topologies, dif-
fering by the layers that feed the context units. The default
configuration feeds the context units with the input sam-

Fig. 1. Topology of MLP model.

Fig. 2. Topologies of JEN model.

ples, providing an integrated past of the input (memory
traces) (configuration 1 in Figure 2). A second configura-
tion creates memory traces from the first hidden layer, as
proposed by Elman (32) (configuration 2 in Figure 2). A
third possibility is to use the past of the last hidden layer
activations as input to the context units (configuration 3 in
Figure 2). The final choice is to use the past of the output
layer to create the memory traces, as proposed by Jordan
(configuration 4 in Figure 2).

Table 5 presents the best topologies for the four
types of neural networks tested in the approached case
study, with their performances, i.e., mean square er-
ror (MSE), correlation between experimental and sim-
ulation data (r ) and percent error (Ep). The well
known back-propagation algorithm was used for network
training.

The best neural model in Table 5 is the Jordan–Elman
network with two hidden layers having 42 and 14 neu-
rons, respectively, noted JEN(7:42:14:2), in configuration 4
(Figure 2). The advantage of more hidden layers is that dif-
ferent activation functions can be selected. While the most
commonly used activation is logistic, in many cases other
functions or combinations of functions are known to per-
form better (14). For the JEN model in Table 5, hyperbolic
tangent was used as activation function for hidden and out-
put layers and also for context units. The performance of
this neural model can be improved by choosing an adequate
combination of activation functions. Many trialed series

Table 5. Different neural networks trained for the synthesis of
hydrogels based on PAAm

No. crt. Network topology MSE r Ep

1 MLP(7:42:14:2) 0.000449 0.9984 1.9583
2 GFF(7:40:20:2) 0.001113 0.9778 8.7477

3 MNN
(

7 :
20
20 :

10
10 : 2

)
0.002027 0.9609 9.8828

4 JEN(7:42:14:2) 0.000231 0.9992 1.2311
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Fig. 3. Structure of semi-interpenetrated networks.

Fig. 4. Typical swelling kinetic curves for mono-component networks (sample No. 8, Table 1).

Fig. 5. Typical swelling kinetic curves for bi-component networks with starch (sample No. 6, Table 2).
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376 Curteanu et al.

Fig. 6. Typical swelling kinetic curves for bi-component networks with PVA (sample No. 8, Table 3).

of network were trained, considering different activation
functions, in different combinations. It appears that the
best combination was Integrator Axon for context units,
Tangent Hyperbolic Axon for the two hidden layers and
Sigmoid Axon for the output layer. In these conditions, the
training performance for JEN(7:42:14:2) becomes: MSE =
0.0000872, r = 0.9997 and Ep = 0.9764. Consequently, an
adequate combination of the transfer functions in the neu-
ral model represents a way of improving the performances
of the network.

3 Results and Discussion

A simultaneous polymerization/crosslinking procedure
was applied for the preparation of polyacrylamidic hy-
drogels to obtain polymers with different network densi-
ties and morphologies. The synthesis was carried out in
presence of some natural (starch and gelatin) or synthetic
(PVA) polymers with high biodegradability and yielded

semi-interpenetrated non-covalent or covalent networks.
The most probable structures are of non-covalent type,
without excluding the formation of more or less important
interpenetrated domains (Figure 3).

The presence of these domains is due to the covalent
bonds appearing through the interactions of the functional
groups of the included polymers, those from PAAm and
from the crosslinking agent.

The use of the inclusion polymers was intended to in-
crease of the biodegradation capacity of PAAm, a polymer
characterized by a reduced biodegradability, both in phys-
iological and environmental conditions.

The obtained experimental data show that the synthe-
sized networks, mono-component and multi-component,
present a high hydrosorption capacity. It appears that, in
all cases, monomer and initiator concentrations, tempera-
ture and polymerization /crosslinking duration influence
the yield of the crosslinked polymer up to maximum value
of 50%. The relatively low yields are due to the forma-
tion of PAAm homopolymer that doesn’t participate to

Fig. 7. Typical swelling kinetic curves for bi-component networks with gelatin (sample No. 7, Table 4).
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Table 6. Experimental and predicted polymer yield in the validation phase for JEN(7:42:14:2)

Type CM [mol/l] CI [% weight] CA [mol/l] T [◦C] t [h] PI [g] η [%] α [%] η [%] JEN Er [%]

1 1.68 0.5 12.33 50 5 0 23.5 6950 21.90 6.8085
1 3 0.47 12.33 50 5 41.1 1211 43.90 6.8646
1 3 0.5 4 50 5 69.9 4256 65.70 5.9816
1 3 0.5 12.33 54 5 42 9986 45.50 8.2817
1 3 0.5 12.33 50 6 44.2 6263 42.80 3.1893
2 1.4 0.5 12.33 50 5 1 19.3 2575 20.70 7.1428
2 3 0.21 12.33 50 1 29 1791 27.20 6.2392
2 3 0.5 4 50 1 24.1 3882 24.20 0.4983
2 3 0.5 12.33 57 1 34 1565 36.80 8.1716
2 3 0.5 12.33 50 1.3 30.8 1582 29.90 2.7958
3 0.92 0.5 12.33 50 5 1 12.8 2030 13.10 2.0249
3 3 0.31 12.33 1 19.2 7640 18.40 4.3659
3 3 0.5 6 1 21.9 3195 20.00 8.6757
3 3 0.5 12.33 1 19.3 2275 18.60 3.8262
3 3 0.5 12.33 0.8 21 3380 22.80 8.4681
4 1.75 0.5 12.33 50 5 1 24.5 5214 22.30 9.0909
4 3 0.18 12.33 1 28.6 6203 26.30 8.0097
4 3 0.5 2 1 49.9 1475 47.10 5.6679
4 3 0.5 12.33 1 29.2 6658 27.80 4.7619
4 3 0.5 12.33 0.5 27.1 6820 29.20 7.6299

Fig. 8. Experimental data and JEN(7:42:14:2) results obtained for polymer yield in different reaction conditions: (a) CI = 0.5%
weight, CA = 12.3 mol/l, T = 50◦C, t = 5 h, PI = 0 g, type 1 (no polymer added); (b) CM = 3 mol/l, CI = 0.5 % weight, CA = 12.3
mol/l, t = 5h, PI = 1g, type 2 (starch); (c) CM = 3 mol/l, CI =0.5 % weight, T = 50◦C, t = 5h, PI = 1g, type 2 (starch); (d) CM = 3
mol/l, CI = 0.5% weight, CA = 12.3 mol/l, T = 50◦C, t = 5 h, PI = 1g, type 3 (PVA).
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378 Curteanu et al.

Fig. 9. Experimental data and JEN(7:42:14:2) results obtained for swelling degree in different reaction conditions: (a) CI = 0.5%
weight, CA = 12.3 mol/l, T = 50◦C, t = 5 h, PI = 0 g, type 1 (no polymer added); (b) CM = 3 mol/l, CI = 0.5% weight, CA = 12.3
mol/l, t = 5h, PI = 1g, type 2 (starch); (c) CM = 3 mol/l, CI = 0.5% weight, T = 50◦C, t = 5h, PI = 1g, type 2 (starch); (d) CM =3
mol/l, CI = 0.5% weight, CA = 12.3 mol/l, T = 50◦C, t = 5 h, PI = 1g, type 3 (PVA).

the crosslinking process and it is removed from the system
during the purification.

The results also show that polymer yield depends mainly
on monomer concentration, in agreement with literature
results (5, 6). As expected, the yield in crosslinked polymer
increases with monomer concentration (Tables 1–4). The
bi-component networks PAAm-starch or PAAm-gelatin at-
tained yields comparable to those of the mono-component
networks, while the PAAm-PVA networks were obtained
in much smaller yields. This is due to the complexity of
the processes that compete for the formation of mono- and
multi-component networks (modification of the viscosity
of the reaction mixture and of the reaction rate). The form-
ing of the networks and their characteristics are influenced
by the differences existing between the used inclusion poly-
mers (structure and reactivity).

The presence of the inclusion polymers induces a differ-
ent swelling behavior. For mono-component networks, the
maximum swelling degrees exceed 10000 %, while the multi-
component networks swell up to 8000%. These differences
are due either to the clogging of the three-dimensional net-
works with the inclusion polymers, or to the forming of
high density covalent interpenetrating networks.

The processing of the data on swelling kinetics of the
obtained hydrogels in different experimental conditions led
to the curves presented in Figures 4–7.

The artificial neural network architecture, training
method, training rates and activation functions were deter-
mined using a trial and error approach. Several attempts
were made until the proper parameters were reached and,
after them, the selected neural network configuration pro-
duced the minimal errors in both training and testing data.
The trial and error method has as main disadvantage the
time consumed for testing manually many possibilities con-
cerning the type and topology of the network, number of
epochs (training time), training method, activation func-
tion etc. On the other hand, an advantage of this technique
could be the flexibility of the method which allows the
user to favorably combine different modeling characteris-
tics and to take into accounts the particularity of the studied
case.

The results of the training procedure for reaction yield
and swelling degree were very successful. Figures 8 and 9
show a good match between the measured and calculated
output parameters that means the neural model learned
well the behavior of the process.
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Fig. 10. The validation phase for swelling degree predicted with
neural model JEN(7:42:14:2).

The main advantage of a neural network consists of the
capacity of generalization from the training examples to
other inputs that were not seen yet. As a general rule,
the model is sought from experimental available sets of
data that clearly contain a number of very interesting rela-
tionships, feature correlations and other information which
cannot be deduced in a straightforward manner from the
first principles, by theoretical calculations or even with nu-
merical methods.

The validation results are presented in Table 6 for the
polymer yield and in Figure 10 for the swelling degree.
Generally, a good agreement was obtained when compared
experimental data not used in the training the neural net-
work with neural network predictions. Relative errors (Er )
in Table 6 were calculated using the formula:

Er % = |ηexp − ηnet|
ηexp

· 100 (4)

where indices exp and net denote experimental and network
yields.

One can notice that the validation relative errors are
below 9% for polymer yield and a little higher for swelling
degree, with a maximum of 12%. The satisfactory results
obtained with the neural model JEN(7:42:14:2) prove that
it can be used to make predictions under different reaction
conditions, substituting the experiments which are time and
material consuming.

Generally, compared to the mechanistic model of a poly-
merization process, a neural network based model is built
more easily and provides accurate results. This is due to
the empirical character of this type of modeling. The ver-
satility of the neural network approach allows us to ren-
der faithfully experimental data used for training. One still
needs to understand that the neural network approach does

not clarify the reaction mechanism itself and does not an-
swer the great question “why ?”. So, one should consider
that both approaches – mechanistic and neural – are nicely
complementary. One side is represented by the mechanistic
model which renders chemical and physical laws and can
supplies, sometimes, less accurate results; the other side is
the neural network model with an empirical character and,
generally, accurate results. The utility of the neural mod-
eling becomes evident when phenomenological models are
not available as, for instance, for polyamide based hydrogels
synthesis.

One can conclude that the neural network modeling
methodology gives a very good representation of polyamide
based hydrogels synthesis. It is a general technique that can
be easily applied to other polymerization processes.

4 Conclusions

A simultaneous polymerization/crosslinking procedure
was applied for the preparation of polyacrylamide hydro-
gels to obtain materials with different swelling capacities
and morphologies. The synthesis was carried out in the
presence of some natural (starch and gelatin) or synthetic
(PVA) polymers with high biodegradability and yielded
semi-interpenetrated networks, without excluding the for-
mation of more or less important interpenetrated domains.

The dependence between reaction conditions (amount
of monomer, initiator, crosslinking agent, inclusion poly-
mer, temperature and reaction time) and yield and swelling
degree in crosslinked polymer was evaluated with artificial
neural networks.

The paper emphasizes a general methodology of model-
ing based on neural networks. This technique has as main
goal to develop an optimum network configuration that
could lead to accurate predictions. It includes the stages
described below.

� The analysis of the problem takes into account the 177
experimental data, available for the preparation of the
multi-component hydrogels based on polyacrylamide.
The experiments were designed to cover uniformly the
variation domain of the parameters, this being an im-
portant requirement for obtaining a credible mathemat-
ical model. The chosen inputs variables of the network
were the reaction conditions which influence the polymer
yield and swelling degree.

� The data were splited into training and validation sets,
approximately 10-15% being reserved for the testing
phase. The validation data do not participate to the train-
ing phase and they were selected from different points
of the experimental domain.

� The establishment of the neural model supposes the use
of a trial and error method. Different types of neural net-
works (MLP, GFF, MNN, JEN) were tested in order to
identify the adequate configuration for the approached
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case study. The combination of different transfer func-
tions for context units, hidden and output layers was a
possibility to improve the performance of the model.

The most adequate neural model for the approached
process was JEN(7:42:14:2) which provides accurate results
in training and testing phases of the modeling methodology.

The presented modeling algorithm is quite general and
can be also applied for different chemical processes, with
high chance to provide accurate results and useful informa-
tion for experimental practice.
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